解答题如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α<90°),点B1在底面上的射影D落在BC上.
(1)若点D恰为BC的中点,且AB1⊥BC1求α的值.
(2)若α=arccos,且当AC=BC=AA1时,求二面角C1-AB-C的大小.
网友回答
解:(1)∵B1D⊥面ABC,
∴B1D⊥AC,
又∵AC⊥BC,
∴AC⊥面BB1C1C.
∵AB1⊥BC1,
∴由三垂线定理可知,B1C⊥BC1,即平行四边形BB1C1C为菱形,
又∵B1D⊥BC,且D为BC的中点,
∴B1C=B1B,即△BB1C为正三角形,
∴∠B1BC=60°,
∵B1D⊥面ABC,且点D落在BC上,
∴∠B1BC即为侧棱与底面所成的角,
∴α=60°.
(2)过C1作C1E⊥BC,垂足为E,则C1E⊥平面ABC.过E作EF⊥AB,垂足为F,由三垂线定理得⊥F⊥AB.
∴根据二面角平面角的定义可得:∠C1FE是所求二面角C1-AB-C的平面角.
设AC=BC=A1A=a,
在Rt△CC1E中,由∠C1CE=α=srccos可得C1E=a,
所以在Rt△BEF中,∠EBF=45°,EF=BE=a,
所以∠C1FE=45°.
故所求的二面角C1-AB-C为45°.解析分析:(1)由题意可得:B1D⊥AC,再结合题意得到:AC⊥面BB1C1C,得到平行四边形BB1C1C为菱形,再根据解三角形的有关知识可得:∠B1BC=60°,进而结合线面角的定义得到