解答题已知A(1,1)是椭圆=1(a>b>0)上一点,F1、F2是椭圆的两焦点,且满足|AF1|+|AF2|=4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点C、D是椭圆上两点,直线AC、AD的倾斜角互补,求直线CD的斜率.
网友回答
解:(1)由椭圆定义知2a=4,所以a=2,
即椭圆方程为=1
把(1,1)代入得=1所以b2=,椭圆方程为:=1
(2)由题意知,AC的倾斜角不为900,故设AC方程为y=k(x-1)十1,
联立消去y,得(1+3k2)x2-6k(k-1)x+3k2-6k-1=0.
∵点A(1,1)、C在椭圆上,∴xC=
∵AC、AD直线倾斜角互补,∴AD的方程为y=-k(x-l)+1,
同理xD=
又yC=k(xC-1)+1,yD=-k(xD-1)+1,
∴yC-yD=k(xC+xD)-2k.
∴.解析分析:(1)根据椭圆的定义可知|AF1|+|AF2|=4=2a,然后将点A(1,1)代入椭圆方程即可求出a,b的值,从而确定椭圆的标准方程.(2)先假设出直线AV的方程,然后联立直线与椭圆消去y得到关于x的一元二次方程,进而表示出点C的横坐标,再由AC、AD直线倾斜角互补可得到直线AD的方程,进而可得到D的横坐标,然后将点C、D的横坐标分表代入直线方程可得到其对应的纵坐标,即可得到