解答题已知正项数列{an}和{bn}中,a1=a(0<a<1),b1=1-a.当n≥2

发布时间:2020-07-09 02:34:12

解答题已知正项数列{an}和{bn}中,a1=a(0<a<1),b1=1-a.当n≥2时,an=an-1bn,bn=.
(1)证明:对任意n∈N*,有an+bn=1;
(2)求数列{an}的通项公式.

网友回答

解:(1)证明:用数学归纳法证明.
①当n=1时,a1+b1=a+(1-a)=1,命题成立;
②假设n=k(k≥1且k∈N*)时命题成立,即ak+bk=1,则当n=k+1时,ak+1+bk+1=akbk+1+bk+1=(ak+1)?bk+1=(ak+1)?===1.
∴当n=k+1时,命题也成立.
由①、②可知,an+bn=1对n∈N*恒成立.
(2)∵an+1=anbn+1===,
∴==+1,
即-=1.
数列{}是公差为1的等差数列,其首项为=,
=+(n-1)×1,从而an=.解析分析:(1)直接利用数学归纳法的证明方法,验证n=1时命题成立,然后假设n=k时命题成立,证明n=k+1时命题也成立即可.(2)利用已知和(1)的结果,化简an+1=anbn+1推出-=1.然后说明数列{}是公差为1的等差数列,其首项为=,求出数列{an}的通项公式.点评:本题是基础题,考查数学归纳法的证明方法,注意n=k+1的证明过程,增加了2k个区域,这是证明的关键所在,两个步骤缺一不可.注意(2)的裂项法的应用.
以上问题属网友观点,不代表本站立场,仅供参考!