已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f′(x)的图象如图所示.若两正数a,b满足f(a+2b)<1,则的取值范围是A.B.C.(-1,

发布时间:2020-07-31 18:21:10

已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f′(x)的图象如图所示.若两正数a,b满足f(a+2b)<1,则的取值范围是A.B.C.(-1,10)D.(-∞,-1)

网友回答

B
解析分析:先由导函数f′(x)是过原点的二次函数入手,再结合f(x)是定义域为R的奇函数求出f(x);然后根据a、b的约束条件画出可行域,最后利用的几何意义解决问题.

解答:由f(x)的导函数f′(x)的图象,设f′(x)=mx2,则f(x)=+n.∵f(x)是定义域为R的奇函数,∴f(0)=0,即n=0.又f(-4)=m×(-64)=-1,∴f(x)=x3=.且f(a+2b)=<1,∴<1,即a+2b<4.又a>0,b>0,则画出点(b,a)的可行域如下图所示.而可视为可行域内的点(b,a)与点M(-2,-2)连线的斜率.又因为kAM=3,kBM=,所以<<3.故选B.

点评:数形结合是数学的基本思想方法:遇到二元一次不定式组要考虑线性规划,遇到的代数式要考虑点(x,y)与点(a,b)连线的斜率.这都是由数到形的转化策略.
以上问题属网友观点,不代表本站立场,仅供参考!