填空题在△ABC中,若∠C=90°,AC=b,BC=a,则△ABC的外接圆的半径r=,把上面的结论推广到空间,写出相类似的结论________.
网友回答
取空间中有三条侧棱两两垂直的四面体A-BCD,且AB=a,AC=b,AD=c,则此三棱锥的外接球的半径是解析分析:这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中在△ABC中,若∠C=90°,AC=b,BC=a,则△ABC的外接圆的半径r=,我们可以类比这一性质,推理出在空间中有三条侧棱两两垂直的四面体A-BCD中类似的结论.解答:由平面图形的性质类比推理空间图形的性质时一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由圆的性质推理到球的性质.由已知在平面几何中,△ABC中,若∠C=90°,AC=b,BC=a,则△ABC的外接圆的半径r=,我们可以类比这一性质,推理出:取空间中有三条侧棱两两垂直的四面体A-BCD,且AB=a,AC=b,AD=c,则此三棱锥的外接球的半径是.故