已知A={x|},B={x|4x+p<0},且A?B,求实数p的取值范围.
网友回答
解:不等式等价于x2-x-2>0,解之得x<-1或x>2
∴集合A={x|}={x|x<-1或x>2},
∵B={x|4x+p<0}={x|x<-},且A?B
∴-≤-1,解之得p≥4
即实数p的取值范围是[4,+∞)
解析分析:根据一元二次不等式解法,得集合A={x|x<-1或x>2},而集合B={x|x<-},结合数轴和A?B,可得-≤-1,解之得p≥4,即得实数p的取值范围.
点评:本题给出两个集合之间的包含关系,求参数p的取值范围,着重考查了一元二次不等式的解法和集合包含关系判断等知识,属于基础题.