已知函数f(x)=-x3+ax2+b(a,b∈R).(1)要使f(x)在(0,2)上单调递增,试求a的取值范围;(2)当a<0时,若函数满足y极大=1,y极小=-3,

发布时间:2020-07-31 12:01:47

已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)要使f(x)在(0,2)上单调递增,试求a的取值范围;
(2)当a<0时,若函数满足y极大=1,y极小=-3,试求y=f(x)的解析式;
(3)当x∈(0,1]时,y=f(x)图象上任意一点处的切线的倾斜角为θ,且,求a的取值范围.

网友回答

解:(1)f′(x)=-3x2+2ax,
由题设,当x∈(0,2)时,f′(x)≥0恒成立,即-3x2+2ax≥0恒成立,
∴2a≥3x恒成立,
∴2a≥6,
∴a≥3
(2)求导函数,可得f′(x)=-3x2+2ax=x(-3x+2a)
a>0时,当x∈(-∞,)时,f′(x)<0,x∈(,0)时,f′(x)>0,x∈(0,+∞)时,f′(x)<0
∴函数在0处取得极大值,在处取得极小值
∵函数满足y极大=1,y极小=-3,
∴f(0)=1,f()=-3
∴a=-3,b=1
∴f(x)=-x3-3x2+1
(3)当x∈(0,1]时,tanθ=f′(x)=-3x3+2ax
∵,∴0≤f'(x)≤1.
∴0≤-3x2+2ax≤1在x∈(0,1]恒成立,
由(1)知,当-3x2+2ax≥0时,a≥,
由-3x2+2ax≤1得2a≤3x+恒成立,
∵3x+≥2(当且仅当x=时,取等号)
∴2a≤2
∴a≤
∴≤a≤

解析分析:(1)先求导函数f′(x),要使f(x)在区间(0,2)上单调递增,只需x∈(0,2)时,f′(x)>0恒成立,利用分离参数法,即可求出a的范围;(2)由(1)中导函数的解析式,我们易求出函数取极值时x的值,然后根据函数f(x)的极小值和极大值,构造关于a,b的方程,解方程后即可求出函数y=f(x)的解析式;(3)根据导数的几何意义可知tanθ=f′(x),然后根据倾斜角为θ的范围求出f′(x)的范围在x∈[0,1]恒成立,将a分离出来,使之恒成立即可求出a的范围.

点评:本题主要考查导数知识的运用,考查灵活运用转化与划归的思想方法进行探索、分析与解决问题的综合能力,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!