如图,圆O的直径AB=6,CD是圆O的弦,BA,DC的延长线交于点P,若PA=4,PC=5,求CD及∠CBD.
网友回答
解:由圆的割线定理,PA?PB=PC?PD,可以求出PD=8,
即CD=3,
CD=OC=3
∴弦CD所对应的圆心角是60°,
又由于同弧所对的圆心角等于圆周角的2倍,
弦CD对应的圆周角即是30°,
即∠CBD=30°
解析分析:由圆的割线定理,PA?PB=PCPD,可以求出PD=8,即CD=3,求∠CBD就是求弦CD所对应的圆周角的大小,那么问题就转化为求长为3的弦在半径为3的圆里所对应的圆周角.
点评:本题考查和圆有关的比例线段,本题解题的关键是根据同弧所对的圆周角和圆心角之间的关系解题,本题是一个基础题.