如图,抛物线y=x2-x-与直线y=x-2交于A、B两点(点A在点B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.

发布时间:2020-07-29 23:36:55

如图,抛物线y=x2-x-与直线y=x-2交于A、B两点(点A在点B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.若使点P运动的总路径最短,则点P运动的总路径的长为A.B.C.D.

网友回答

A

解析分析:首先根据题意求得点A与B的坐标,求得抛物线的对称轴,然后作点A关于抛物线的对称轴x=的对称点A′,作点B关于x轴的对称点B′,连接A′B′,则直线A′B′与直线x=的交点是E,与x轴的交点是F,而且易得A′B′即是所求的长度.

解答:如图∵抛物线y=x2-x-与直线y=x-2交于A、B两点,∴x2-x-=x-2,解得:x=1或x=,当x=1时,y=x-2=-1,当x=时,y=x-2=-,∴点A的坐标为(,-),点B的坐标为(1,-1),∵抛物线对称轴方程为:x=-=作点A关于抛物线的对称轴x=的对称点A′,作点B关于x轴的对称点B′,连接A′B′,则直线A′B′与对称轴(直线x=)的交点是E,与x轴的交点是F,∴BF=B′F,AE=A′E,∴点P运动的最短总路径是AE+EF+FB=A′E+EF+FB′=A′B′,延长BB′,AA′相交于C,∴A′C=++(1-)=1,B′C=1+=,∴A′B′==.∴点P运动的总路径的长为.故选A.

点评:此题考查了二次函数与一次函数的综合应用.注意找到点P运动的最短路径是解此题的关键,还要注意数形结合与方程思想的应用.
以上问题属网友观点,不代表本站立场,仅供参考!