如图,BC是圆O直径,A是圆O上一点,过点C做圆O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证AP是圆O切线.(2)若OC=CP,AB=3√3,求CD的长
网友回答
如图,BC是圆O直径,A是圆O上一点,过点C做圆O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证AP是圆O切线.(2)若OC=CP,AB=3√3,求CD的长(图2)(1)证明:连OA、OE,
因为CD是圆O的切线,∴∠BCD=90°
因为ED=EC OB=OC ∴OE∥BD
∴∠COE=∠OBA ∠BAO=∠AOE
因为OB=OA ∴∠OBA=∠OAB ∴∠COE=∠AOE
OA=OC OE=OE
∴△OCE≅△OAE(SAS)
∴∠OAE=∠OCE=90°
∴AP⊥OA
∴AP是圆O的切线.
(2)因为OC=CP
OA=OC=OP/2
∴∠P=30° ∠AOP=60°
∠B=∠AOP/2=30°
∴∠D=60°
由△OCE≅△OAE得EA=EC∴ED=EA
∴△AED是等边三角形∴AD=DE=EC
∴∠D=60°
CD=BD/2设AD=X 则有2X=(X+3√(3))/2
得X=√(3)
∴CD=2√(3)