设函数,f(x)=sin(2ωx+φ)在(ω>0,-π<φ<0],函数y=f(x)的相邻两条对称轴间距离为π,且函数的图象的一个对称中心为I(-,0].(I)求函数y

发布时间:2020-07-31 16:41:46

设函数,f(x)=sin(2ωx+φ)在(ω>0,-π<φ<0],函数y=f(x)的相邻两条对称轴间距离为π,且函数的图象的一个对称中心为I(-,0].
(I)求函数y=f(x)的解析式;
(II)在△ABC中,若f(A)=-,f(B)=-,求:角c的大小.

网友回答

解:∵函数y=f(x)的相邻两条对称轴间距离为π,
∴T==2π,ω=,
又 函数的图象的一个对称中心为()
∴sin()=0? 而-π<φ<0
∴φ=.
所以函数y=f(x)的解析式为y=sin(x-)=-cosx
(II)由(I)可知:cosA=,cosB=,又A,B∈(0,π),
所以,sinA=,sinB=,
cosC=cos[π-A-B]=cos(A+B)=-(cosAcosB-sinAsinB)
==-,
又C∈(0,π),∴C=.

解析分析:(I)函数y=f(x)的相邻两条对称轴间距离为π,,求出函数周期,得到ω,函数的图象的一个对称中心为I(-,0].求出φ,然后求出函数y=f(x)的解析式;(II)在△ABC中,通过f(A)=-,求出cosA,sinA,f(B)=-,求出cosB,sinB,利用cosC=cos[π-A-B]求出cosC,根据C的范围求角c的大小.

点评:本题是基础题,考查三角函数的解析式的求法,注意周期的应用,两角和的余弦公式的应用,同时注意C的范围,以及角的变换的技巧,是解题的关键,考查计算能力.
以上问题属网友观点,不代表本站立场,仅供参考!