若函数f(x),g(x)分别是奇函数和偶函数,则y=f(x)?g(x)的图象一定关于(  )对称.A.原点B.x轴C.y轴D.直线y=x

发布时间:2020-07-31 16:41:41

若函数f(x),g(x)分别是奇函数和偶函数,则y=f(x)?g(x)的图象一定关于(  )对称.A.原点B.x轴C.y轴D.直线y=x

网友回答

A

解析分析:根据f(-x)=-f(x)和g(-x)=g(x),判断出函数y=f(x)?g(x)是奇函数,再由奇函数图象的性质进行判断.

解答:∵f(x)是奇函数,∴f(-x)=-f(x),∵g(x)是偶函数,∴g(-x)=g(x)∴f(-x)g(-x)=-f(x)g(x),则函数y=f(x)?g(x)是奇函数,∴y=f(x)?g(x)的图象关于原点对称.故选A.

点评:本题考查了函数的奇偶性应用,主要根据关系式和奇(偶)函数的图象性质进行判断或证明.
以上问题属网友观点,不代表本站立场,仅供参考!