解答题(1)若(1+x)n的展开式中,x3的系数是x的系数的7倍,求n;
(2)若(ax+1)7(a≠0)的展开式中,x3的系数是x2的系数与x4的系数的等差中项,求a;
(3)已知(2x+xlgx)8的展开式中,二项式系数最大的项的值等于1120,求x.
网友回答
解:(1).
(2)C75a2+C73a4=2C74a3,21a2+35a4=70a3,a≠0,
得.
(3)展开式共有9项,据二项式系数的性质:中间项的二项式系数最大
C84(2x)4(xlgx)4=1120,x4(1+lgx)=1,lg2x+lgx=0,
得lgx=0,或lgx=-1,
所以.解析分析:(1)利用二项展开式的通项公式求出x3的系数和x的系数,列出方程求出n(2)利用二项展开式的通项公式求出x3的系数,x2的系数与x4的系数,列出方程求出a(3)利用二项式系数的性质中间项的二项式系数最大,列出方程求出x点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题;二项式系数的性质.