如图,在△ABC中,∠BAC=135°,AD⊥BC于D,且AB+BD=DC,那么∠C=________°.
网友回答
15
解析分析:由AB+BD=DC,可以得到辅助线:在DC上截取DE=BD,连接AE;根据SAS证得△ADB≌△ADE,再利用全等三角形的对应边,对应角相等,可得到∠B=∠AED,AE=AB;又由等量代换,证得△AEC是等腰三角形,利用等边对等角,即可求得∠B与∠C的关系,由三角形的内角和是180°,即可求得结果.
解答:解:在DC上截取DE=BD,连接AE,∵AD⊥BC,∴∠ADB=∠ADE=90°,∵AD=AD,∴△ADB≌△ADE,∴∠B=∠AED,AE=AB,∵AB+BD=DC,DE+EC=DC,∴AE=AB=EC,∴∠AEB=2∠EAC=2∠C,∴∠B=2∠C,∵∠BAC=135°,∠B+∠C+∠BAC=180°,∴3∠C=45°,∴∠C=15°.故