若圆x2+y2-4x-4y-10=0上有且仅有三个不同点到直线l:y=kx的距离为,则k=A.B.C.D.±1
网友回答
A
解析分析:把圆的方程化为标准方程,找出圆心A的坐标和半径r的值,由圆A上有且仅有三个不同点到直线l:y=kx的距离为2,则圆心A到直线l的距离等于r-2,故利用点到直线的距离公式列出关于k的方程,求出方程的解得到k的值.
解答:解:把圆x2+y2-4x-4y-10=0化为标准方程得:(x-2)2+(y-2)2=18,∴圆心A的坐标为(2,2),半径r=3,又直线l的方程为y=kx,根据题意画出图形得:根据圆上有三不同点到直线l:y=kx的距离为2,得到圆心A到直线l的距离d==3-2=,解得 k=2+,或k=2-,故选A.
点评:此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,两角和与差的正切函数公式,利用了转化及数形结合的思想,其中根据题意得出圆心到直线l的距离为,是解本题的关键,属于中档题.