设a,b随机取自集合{1,2,3},则直线ax+by+3=0与圆x2+y2=1有公共点的概率是________.
网友回答
解析分析:由题意可得,直线ax+by+3=0与圆x2+y2=1有公共点,即圆心到直线的距离小于或等于半径,化简即a2+b2≥9.所有的(a,b)共有3×3个,用列举法求得满足条件的(a,b)共有5个,由此求得直线ax+by+3=0与圆x2+y2=1有公共点的概率.
解答:直线ax+by+3=0与圆x2+y2=1有公共点,即 圆心到直线的距离小于或等于半径,即 ≤1,即 a2+b2≥9.所有的(a,b)共有3×3=9个,而满足条件的(a,b)共有:(1,3)、(2,3)、(3,3)、(3,1)、(3,2),共有5个,故直线ax+by+3=0与圆x2+y2=1有公共点的概率是 ,故