解答题解方程:log2(4x-4)=x+log2(2x+1-5)
网友回答
解:log2(4x-4)=x+log2(2x+1-5)即为
log2(4x-4)-log2(2x+1-5)=x
即为
所以
令t=2x即
解得t=4或t=1
所以x=2或x=0(舍)
所以方程的解为x=2.解析分析:利用对数的运算法则将方程变形为,将对数式化为指数式得到,通过换元转化为二次方程,求出x的值,代入对数的真数检验.点评:本题考查对数的真数大于0、对数的运算法则、二次方程的解法,解题过程中要注意对数的定义域,属于基础题.