“λ<1”是“数列an=n2-2λn(n∈N*)为递增数列”的A.充分不必要条件

发布时间:2020-07-09 08:37:15

“λ<1”是“数列an=n2-2λn(n∈N*)为递增数列”的













A.充分不必要条件












B.必要不充分条件











C.充要条件











D.既不充分也不必要条件

网友回答

A解析分析:由“λ<1”可得 an+1-an>0,推出“数列an=n2-2λn(n∈N*)为递增数列”.由“数列an=n2-2λn(n∈N*)为递增数列”,不能推出“λ<1”,由此得出结论.解答:由“λ<1”可得 an+1-an=[(n+1)2-2λ(n+1)]-[n2-2λn]=2n-2λ+1>0,故可推出“数列an=n2-2λn(n∈N*)为递增数列”,故充分性成立.由“数列an=n2-2λn(n∈N*)为递增数列”可得 an+1-an=[(n+1)2-2λ(n+1)]-[n2-2λn]=2n-2λ+1>0,故λ<,故λ<,不能推出“λ<1”,故必要性不成立.故“λ<1”是“数列an=n2-2λn(n∈N*)为递增数列”的充分不必要条件,故选A.点评:本题主要考查充分条件、必要条件、充要条件的定义,数列的单调性的判断方法,属于基础题.
以上问题属网友观点,不代表本站立场,仅供参考!