下列说法正确的是A.函数图象的一条对称轴是直线x=B.若命题p:“?x∈R,x2-2x-1>0”,则命题¬p:“?x∈R,x2-2x-1<0”C.“a=1”是“直线x

发布时间:2020-07-31 20:06:06

下列说法正确的是A.函数图象的一条对称轴是直线x=B.若命题p:“?x∈R,x2-2x-1>0”,则命题¬p:“?x∈R,x2-2x-1<0”C.“a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件D.若x≠0,x≥2

网友回答

A
解析分析:对于A,可求得其对称轴方程为x=kπ+,k∈Z,从而可作出判断;对于B,利用特称命题的否定是全称命题,即可作出判断;对于C,直线x-ay=0与直线x+ay=0互相垂直,可求得a的值,从而可作出判断;对于D,利用双钩函数的性质可作出判断.

解答:对于A,,∵函数f(x)=2sin(2x+),∴其对称轴方程由2x+=2kπ+,k∈Z得:x=kπ+,k∈Z,显然,当k=0时,x=,∴A正确;对于B,命题p:“?x∈R,x2-2x-1>0”,则命题¬p:“?x∈R,x2-2x-1≤0”,故B错误;对于C,∵直线x-ay=0与直线x+ay=0互相垂直,∴1-a2=0,∴a=±1,故C错误;对于D,∵x≠0,y=x+,∴当x>0时,y≥2,当x<0时,y≤-2,故D错误.故选:A.

点评:本题考查命题的真假判断与应用,考查必要条件、充分条件与充要条件的判断,考查空间中直线与直线之间的位置关系,属于中低档提.
以上问题属网友观点,不代表本站立场,仅供参考!