抛物线y=x2-4x+3及其在点A(1,0)和B(3,0)处的两条切线所围成图形的面积为
A.
B.
C.2
D.
网友回答
A解析分析:欲求切线的方程,只须求出其斜率的值即可,故先利用导数求出在切点处的导函数值,再结合A(1,0),B(3,0)都在抛物线上,即可求出切线的方程,然后可得直线与抛物线的交点的坐标和两切线与x轴交点的坐标,最后根据定积分在求面积中的应用公式即可求得所围成的面积S即可.解答:解:对y=x2-4x+3求导可得,y′=2x-4∴抛物线y=x2-4x+3及其在点A(1,0)和B(3,0)处的两条切线的斜率分别为-2,2从而可得抛物线y=x2-4x+3及其在点A(1,0)和B(3,0)处的两条切线方程分别为l1:2x+y-2=0,l2:2x-y-6=0(2)由可得交点P(2,-2)S=[(x2-4x+3)-(-2x+2)]dx+[(x2-4x+3)-(2x-6)]dx=(x2-2x+1)dx+=(-x2+x))+-3x2=故选A点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程、定积分在求面积中的应用等基础知识,考查运算求解能力.属于基础题.