.设f(x)=x2-4x-4,x∈[t,t+1](t∈R),求函数f(x)的最小值的解析式,并作出此解析式的图象.
网友回答
解:f(x)=x2-4x-4=(x-2)2-8,即抛物线开口向上,对称轴为x=2,最小值为-8,过点(0,-4),
结合二次函数的图象可知:
当t+1<2,即t<1时,f(x)=x2-4x-4,x∈[t,t+1](t∈R)在x=t+1处取最小值f(t+1)=t2-2t-7,
当,即1≤t≤2时,f(x)=x2-4x-4,x∈[t,t+1](t∈R)在x=2处取最小值-8,
当t>2时,f(x)=x2-4x-4,x∈[t,t+1](t∈R)在x=t处取最小值f(t)=t2-4t-4,
即最小值为g(t),由以上分析可得,,作图象如下;
解析分析:f(x)=x2-4x-4=(x-2)2-8,即抛物线开口向上,对称轴为x=2,最小值为-8,过点(0,-4),通过数形结合得出分段函数,再作出其图象即可.
点评:本题为二次函数的区间最值问题,分类讨论是解决问题的关键,属中档题.