若正数a,b,c成公比大于1的等比数列,则当x>1时,logax,logbx,logcxA.依次成等比数列B.各数的倒数依次成等比数列C.依次成等差数列D.各数的倒数依次成等差数列
网友回答
D
解析分析:由条件可得?b2=ac>0,利用对数的运算性质化简 logxb2,可得它等于logxa+logxc,从而得出结论.
解答:由题意可得正数a,b,c都不等于1,否则,logax,logbx,logcx? 中至少会有一个式子无意义.由于正数a,b,c成公比大于1的等比数列,则 b2 =ac>0,故当x>1时,有 logxb2=logxac,即 2logxb=logxa+logxc,∴logxa、logxb、logxc?成等差数列,即 、、成等差数列.故选D.
点评:本题主要考查等差数列的定义和性质,比数列的定义和性质,对数的运算性质,由条件得到2logxb=logxa+logxc 是解题的关键,属于中档题.