已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.

发布时间:2020-07-31 16:50:53

已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.

网友回答

解:由2cos2B-8cosB+5=0,可得4cos2B-8cosB+3=0,
即(2cosB-1)(2cosB-3)=0.
解得或(舍去).
∵0<B<π,∴
又∵a,b,c成等差数列,即a+c=2b.
∴,
化简得a2+c2-2ac=0,解得a=c,

∴△ABC是等边三角形.

解析分析:先利用二倍角公式将方程2cos2B-8cosB+5=0化为关于cosB的方程,解得cosB,从而由B的范围确定角B的大小,再由余弦定理结合a、b、c成等差数列,得三角形边的关系,最后确定三角形形状

点评:本题考查了二倍角公式,简单的三角方程解法,余弦定理及其推论的用法,判断三角形形状问题的一般解决方法
以上问题属网友观点,不代表本站立场,仅供参考!