如图,平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,若四面体A′-BCD顶点在同一个球面上,则该球

发布时间:2020-08-04 18:17:26

如图,平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,若四面体A′-BCD顶点在同一个球面上,则该球的体积为A.B.3πC.D.2π

网友回答

A
解析分析:说明折叠后几何体的特征,求出三棱锥的外接球的半径,然后求出球的体积.

解答:由题意平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,若四面体A′-BCD顶点在同一个球面上,可知A′B⊥A′C,所以BC 是外接球的直径,所以BC=,球的半径为:;所以球的体积为:=.故选A

点评:本题是基础题,考查折叠问题,三棱锥的外接球的体积的求法,考查计算能力,正确球的外接球的半径是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!