(坐标系与参数方程选讲选做题)已知直线l的参数方程为:(t为参数),圆C的极坐标方程为,则直线l与圆C的位置关系为________.
网友回答
相交
解析分析:把直线l的参数方程化为普通方程,把圆C的极坐标方程化为直角坐标系中的方程,找出圆心坐标与半径r,利用点到直线的距离公式求出圆心到直线l的距离d,比较d与半径r的大小即可判断出直线l与圆C的位置关系.
解答:把直线l的参数方程化为普通方程得:2x-y+1=0,把圆C的极坐标方程化为平面直角坐标系的方程得:x2+=2,所以圆心坐标为(0,),半径r=,因为圆心到直线l的距离d=<r=,所以直线l与圆C的位置关系为相交.故