解答题已知平面区域被圆C及其内部所覆盖.(1)当圆C的面积最小时,求圆C的方程;(2)

发布时间:2020-07-09 05:40:20

解答题已知平面区域被圆C及其内部所覆盖.
(1)当圆C的面积最小时,求圆C的方程;
(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.

网友回答

解:(1)由题意知此平面区域表示的是以O(0,0),P(4,0),Q(0,2)构成的三角形及其内部,且△OPQ是直角三角形,
由于覆盖它的且面积最小的圆是其外接圆,∴圆心是Rt△OPQ的斜边PQ的中点C(2,1),半径r=|OC|==,
∴圆C的方程是(x-2)2+(y-1)2=5.
(2)设直线l的方程是:y=x+b.∵CA⊥CB,∴圆心C到直线l的距离是=,
即,解之得,b=-1±.
∴直线l的方程是:y=x-1±.解析分析:(1)由约束条件得出其可行域是直角三角形及其内部,被圆C及其内部所覆盖,覆盖它的且面积最小的圆是其外接圆,求出即可;(2)设出直线l的方程,直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,则圆心C到直线l的距离是,利用点到直线的距离公式即可求出.点评:正确由约束条件得出其可行域是直角三角形及其内部,覆盖它的且面积最小的圆是其外接圆,进而即可得出其圆的方程.熟练掌握直线与圆相交问题的解题模式及点到直线的公式是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!