解答题在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二

发布时间:2020-07-09 05:39:53

解答题在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张券中任抽2张,求:
(1)该顾客中奖的概率
(2)该顾客获得的奖品总价值ξ(元)的概率分布列和数学期望.

网友回答

解:(1)由题意可得:该顾客没有中奖的概率为:=,
所以该顾客中奖的概率为P=1-=1-=,
即该顾客中奖的概率为 .
(2)根据题意可得:ξ的所有可能值为:0,10,20,50,60(元).
所以P(ξ=0)==,P(ξ=10)==,P(ξ=20)==,P(ξ=50)==,P(ξ=60)==
所以ξ的分布列为:
ξ010205060P所以ξ的数学期望为:Eξ=0×+10×+20×+50×+60×=16.解析分析:(1)由题意首先求出“该顾客没有中奖的概率”,再根据对立事件的概率之和为1,即可得到“该顾客中奖的概率”.(2)根据题意可得:ξ的所有可能值为:0,10,20,50,60,再根据古典概型的概率公式分别求出其概率,进而列出ξ的分布列与其期望.点评:解决此类问题的关键是熟练掌握古典概型的定义与计算公式,以及排列组合与离散型随机变量的分布列和期望,考查学生利用概率知识解决实际问题的能力.
以上问题属网友观点,不代表本站立场,仅供参考!