如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于A.B.C.D.

发布时间:2020-07-30 13:02:21

如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于A.B.C.D.

网友回答

C
解析分析:先构造直角三角形QBC,根据三角形中位线定理分别求出QB、QC的长,再根据余弦的定义即可求出结果.

解答:解:当点P运动到恰好点Q落在⊙O上,连接QB,OP,BC,再连接QO并延长交⊙O于点C,则∠CBQ=90°(直径所对的圆周角是直角)∵B、Q分别是OA、AP的中点,∴BQ∥OP,∵OP=OB=BA=OA=2,∴QB=1在Rt△CQB中,∠CBQ=90°∴cos∠OQB==.故选C.

点评:本题综合考查了三角形中位线定理,余弦的定义和圆的性质,解题的关键是通过作辅助线构造直角三角形.
以上问题属网友观点,不代表本站立场,仅供参考!