解答题已知等差数列{an}的前n项和为Sn,且a6=-5,S4=-62.
(1)求{an}通项公式;
(2)求数列{|an|}的前n项和Tn.
网友回答
解:(1)设等差数列{an}的公差为d,
则由条件得,…(3分)
解得,…(5分)
所以{an}通项公式an=-20+3(n-1),
则an=3n-23…(6分)
(2)令3n-23≥0,则,
所以,当n≤7时,an<0,当n≥8时,an>0.…(8分)
所以,当n≤7时,
=,
当n≥8时,Tn=b1+b2+…+bn=-(a1+a2+…+a7)+a8+…+an
=-2(a1+a2+…+a7)+a1+a2+…+a7+a8+…+an
=,
所以.…(12分)解析分析:(1)设等差数列{an}的公差为d,则由条件得,由此能求出{an}通项公式.(2)令3n-23≥0,则,所以,当n≤7时,an<0,当n≥8时,an>0.当n≤7时,=,当n≥8时,Tn=b1+b2+…+bn=-(a1+a2+…+a7)+a8+…+an=-2(a1+a2+…+a7)+a1+a2+…+a7+a8+…+an=,由此能求出数列{|an|}的前n项和Tn.点评:本题考查数列通项公式的求法和数列前n项和的求法,综合性强,难度大,计算繁琐,是高考的重点.解题时要认真审题,仔细解答,注意合理地进行等价转化.