已知函数在点(1,f(1))处的切线方程为x+y=2.
(I)求a,b的值;
(II)对函数f(x)定义域内的任一个实数x,恒成立,求实数m的取值范围.
网友回答
解:(Ⅰ)∵,∴
∵点(1,f(1))在直线x+y=2上,∴f(1)=1,
∵直线x+y=2的斜率为-1,∴f′(1)=-1
∴有,∴
(Ⅱ)由(Ⅰ)得
由及x>0,可得
令,∴
令h(x)=1-x-lnx,∴,故h(x)在区间(0,+∞)上是减函数,
故当0<x<1时,h(x)>h(1)=0,当x>1时,h(x)<h(1)=0
从而当0<x<1时,g′(x)>0,当x>1时,g′(x)<0
∴g(x)在(0,1)是增函数,在(1,+∞)是减函数,故g(x)max=g(1)=1
要使成立,只需m>1
故m的取值范围是(1,+∞).
解析分析:(I)求导函数,利用函数在点(1,f(1))处的切线方程为x+y=2,建立方程组,即可求a,b的值;(II)对函数f(x)定义域内的任一个实数x,恒成立,等价于恒成立,求出函数的最值,即可求实数m的取值范围.
点评:本题考查导数知识的运用,考查导数的几何意义,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.