已知函数f(x)=x3+ax2+bx+c,若f(x)在区间(-1,0)上单调递减,则a2+b2的取值范围A.B.C.D.
网友回答
C
解析分析:由函数在区间(-1,0)上是单调递减,得到导函数小于等于0恒成立即f′(-1)≤0且f′(0)≤0代入得到一个不等式组,可以把而a2+b2可视为平面区域内的点到原点的距离的平方,则由点到直线的距离公式求出即可得到最小值.
解答:解:(1)依题意,f′(x)=3x2+2ax+b≤0,在(-1,0)上恒成立.只需要即可,也即,而a2+b2可视为平面区域内的点到原点的距离的平方,由点到直线的距离公式d2==,∴a2+b2的最小值为.则a2+b2的取值范围.故选C.
点评:考查学生利用导数研究函数的单调性的能力,理解二元一次不等式组与平面区域的关系,考查数形结合思想.属于基础题.