设α、β为两个不同的平面,直线l?α,则“l⊥β”是“α⊥β”成立的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
网友回答
A解析分析:面面平行的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.根据题意由判断定理得l⊥β?α⊥β.若α⊥β,直线l?α则直线l⊥β,或直线l∥β,或直线l与平面β相交,或直线l在平面β内.由α⊥β,直线l?α得不到l⊥β,所以所以“l⊥β”是“α⊥β”成立的充分不必要条件.解答:面面平行的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.因为直线l?α,且l⊥β所以由判断定理得α⊥β.所以直线l?α,且l⊥β?α⊥β若α⊥β,直线l?α则直线l⊥β,或直线l∥β,或直线l与平面β相交,或直线l在平面β内.所以“l⊥β”是“α⊥β”成立的充分不必要条件.故