已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

发布时间:2020-07-31 17:49:31

已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

网友回答

解:∵f(x)是R上的奇函数且在[0,+∞)上是增函数
∴f(x)是R上的增函数且f(-x)=-f(x)
由f(a+2)+f(a)>0得f(a+2)>-f(a)
即f(a+2)>f(-a)
a+2>-a,
解得:a>-1

解析分析:要求a的取值范围,先要列出关于a的不等式,这需要根据原条件,然后根据减函数的定义由函数值逆推出自变量的关系.

点评:本题主要考查函数单调性和奇偶性的应用,考查运算能力,体现了转化的思想,属中档题.
以上问题属网友观点,不代表本站立场,仅供参考!