如图,在一条公路CD的同一侧有A、B两个村庄,A、B与公路的距离AC、BD分别为500m和700m,且C、D两地相距500m,若要公路旁(在CD上)建一个车站,则A、B两村庄到车站的距离之和最短是A.1000mB.1200mC.1300mD.1700m
网友回答
C
解析分析:本题即是要在CD上找一个点(设为点P),使AP+PB的和最小.设A′是点A关于CD的对称点,当A′、P、B三点共线时,AP+PB的和最小.
解答:解:延长AC到A′,使A′C=AC,则A′与点A关于CD对称.连接A′B交CD于点P,连接PA,此时AP+PB的和最小.∵A′与点A关于CD对称,∴PA′=PA,∴AP+PB=A′P+PB=A′B.过点B作AC的垂线,垂足为点E.在直角△A′BE中,BE=CD=500m,A′E=A′C+CE=AC+BD=1200m,由勾股定理,得A′B==1300m.∴AP+PB=1300m.故A、B两村庄到集贸市场的距离之和最短是1300m.故选C.
点评:本题主要考查轴对称--最短路线问题,作出其中一点的对称点,构造直角三角形并利用两点之间线段最短是解题的关键.