(理科)已知函数f(x)=alnx-ax-3(a∈R).(1)讨论函数f(x)的单调性;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对

发布时间:2020-07-31 22:46:27

(理科)已知函数f(x)=alnx-ax-3(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对任意的t∈[1,2],若函数在区间(t,3)上有最值,求实数m取值范围;
(3)求证:ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*)
(文科)?已知函数
(1)若x=-1是f(x)的极值点且f(x)的图象过原点,求f(x)的极值;
(2)若,在(1)的条件下,是否存在实数b,使得函数g(x)的图象与函数f(x)的图象恒有含x=-1的三个不同交点?若存在,求出实数b的取值范围;否则说明理由.

网友回答

解:(1) ,
当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);
当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];
当a=0时,f(x)不是单调函数
(2)因为函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,
所以f′(2)=1,所以a=-2,,
,g′(x)=3x2+(4+m)x-26
因为对于任意的t∈[1,2],函数 在区间(t,3)上
总存在极值,所以只需 ,解得
(3)令a=-1(或a=1)
此时f(x)=-lnx+x-3,
所以f(1)=-2,
由(1)知f(x)=-lnx+x-3,在[1,+∞)上单调递增,
∴当x∈(1,+∞)时f(x)>f(1),即-lnx+x-1>0,
∴lnx<x-1对一切x∈(1,+∞)成立,
∵n≥2,n∈N*,
则有 ,
∴要证ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!
即要证 ,

=1-<1.
(文科)(1)∵f(x)的图象过原点
∴c=0,f'(x)=3ax2+x-2
∵x=-1是f(x)的极值点
∴f'(-1)=3a-1-2=0,解得a=1
∴f(x)=x3+x2-2x
(2)∵x=-1是函数g(x)的图象与函数f(x)的图象的公共点
∴f(-1)=g(-1)即d=
f(x)=x3+x2-2x=bx2-x+
? 化简得(x2-1)(x-+)=0
∵函数g(x)的图象与函数f(x)的图象恒有含x=-1的三个不同交点
∴≠±1
即b∈(-∞,-1)∪(-1,3)∪(3,+∞)
解析分析:(理科)(1)先对函数f(x)进行求导,然后令导函数大于0(或小于0)求出x的范围,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可得到
以上问题属网友观点,不代表本站立场,仅供参考!