数列{an}满足Sn=2n-an(n∈N)
(Ⅰ)计算a1,a2,a3,a4;
(Ⅱ)猜想通项公式an,并用数学归纳法证明.
网友回答
解:(Ⅰ)由a1=2-a1,得a1=1,
由a1+a2=2×2-a2,得a2=,
由a1+a2+a3=2×3-a3,得a3=,
由a1+a2+a3+a4=2×4-a4,得a4=,
猜想an=
(Ⅱ)证明:(1)当n=1,由上面计算可知猜想成立,
(2)假设n=k时猜想成立,即ak=,
此时Sk=2k-ak=2k-,
当n=k+1时,S k+1=2(k+1)-a k+1,得Sk+ak+1=2(k+1)-ak+1,
因此ak+1=[2(k+1)-Sk]=k+1-(2k-)=,
∴当n=k+1时也成立,
∴an=(n∈N+).
解析分析:(I)根据Sn=2n-an,利用递推公式,求出a1,a2,a3,a4.(II)总结出规律求出an,然后利用归纳法进行证明,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.
点评:此题主要考查归纳法的证明,归纳法一般三个步骤:(1)验证n=1成立;(2)假设n=k成立;(3)利用已知条件证明n=k+1也成立,从而求证,这是数列的通项一种常用求解的方法.