对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若,则该函数的对称中心为________,计算=________.
网友回答
2012
解析分析:根据函数f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,由此求得三次函数f(x)的对称中心.由于函数的对称中心为(,1),可知f(x)+f(1-x)=2,由此能够求出所给的式子的值.
解答:∵,则 f′(x)=x2-x+,f″(x)=2x-1,令f″(x)=2x-1=0,求得x=,故函数y=f(x)的“拐点”为(,1).由于函数的对称中心为(,1),∴f(x)+f(1-x)=2,∴=2×1006=2012,故