已知函数f(x)是定义(0,+∞)的单调递增函数,且x∈N*时,f(x)∈N*,若f[f(n)]=3n,则f(2)=________;f(4)+f(5)=________.
网友回答
解:若f(1)=1,则f(f(1))=f(1)=1,与条件f(f(n))=3n矛盾,故不成立;
若f(1)=3,则f(f(1))=f(3)=3,即f(1)=f(3)这与函数单调递增矛盾,故不成立;
若f(1)=n (n>3),则f(f(1))=f(n)=3,与f(x)单调递增矛盾,故不成立;
所以只剩f(1)=2,代入可得f(f(1))=f(2)=3,
进而可得f(f(2))=f(3)=6,f(f(3))=f(6)=9,
由单调性可知f(4)=7,f(5)=8,故f(4)+f(5)=15
故