已知双曲线(a>0,b>0)的左右焦点是F1,F2,设P是双曲线右支上一点,上的投影的大小恰好为且它们的夹角为,则双曲线的离心率e为
A.
B.
C.
D.
网友回答
C解析分析:先根据上的投影的大小恰好为判断两向量互相垂直得到直角三角形,进而根据直角三角形中内角为,结合双曲线的定义建立等式求得a和c的关系式,最后根据离心率公式求得离心率e.解答:∵上的投影的大小恰好为∴PF1⊥PF2且它们的夹角为,∴,∴在直角三角形PF1F2中,F1F2=2c,∴PF2=c,PF1=又根据双曲线的定义得:PF1-PF2=2a,∴c-c=2a∴e=故选C.点评:本题主要考查了双曲线的简单性质.考查了学生综合分析问题和运算的能力.解答关键是通过解三角形求得a,c的关系从而求出离心率.