在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3

发布时间:2020-07-30 08:10:24

在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是A.②③B.③④C.①②④D.②③④

网友回答

D
解析分析:这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.

解答:∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴OB=OA=OD=OC=AB=CD=1,∴△OAB,△OCD为等边三角形.∵AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∴∠FAB=45°,∴∠CAH=45°-30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.故选D.

点评:本题主要考查了矩形的性质及正三角形的性质.
以上问题属网友观点,不代表本站立场,仅供参考!