解答题在数列{an}中,a1=1,,设bn=a2n-2,Sn=|b1|+|b2|+…+|bn|.
(1)求数列{bn}的通项公式;
(2)若Tn=a1+a2+a3+…+a2n+a2n+1,试比较Sn与Tn的大小.
网友回答
解:(1)a2=,a2n==+2n-1=,∵bn=a2n-2,
∴b1=a2-2=1.5-2=-0.5,
bn-1=a2n-2-2,即a2n-2=cn-1+2
=
=,
所以{bn}是首项为b1=-0.5,公比为q=的等比数列其通项公式为.
(2)∵,
∴Sn=|b1|+|b2|+…+|bn|
=
=
=1-.∵a2n+1=a2n-2(2n)=a2n-4n,a2n+a2n+1=2a2n-4n=2(bn+2)-4n=2bn-4(n-1),∴Tn=a1+a2+a3+…+a2n+a2n+1=a1+(a2+a3)+…+(a2n+a2n+1)=1+2b1+…+[2bn-4(n-1)]=1+2(b1+b2+…+bn)-4[1+2+…+(n-1)]=1+2×-2n(n-1)=1+-2n(n-1)=.
∴Sn>Tn.解析分析:(1)a2=,a2n==,由bn=a2n-2,能导出{bn}的通项公式.(2)由,知Sn=|b1|+|b2|+…+|bn|==1-.由a2n+1=a2n-2(2n)=a2n-4n,a2n+a2n+1=2a2n-4n=2(bn+2)-4n=2bn-4(n-1),知Tn=a1+(a2+a3)+…+(a2n+a2n+1)=1+2b1+…+[2bn-4(n-1)]=1+2(b1+b2+…+bn)-4[1+2+…+(n-1)]=.由此能够导出Sn>Tn.点评:本题考查数列的综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.