已知数列{an}满足a1=0,an+1+Sn=n2+2n(n∈N*),其中Sn为{an}的前n项和,则此数列的通项公式为________.
网友回答
解析分析:由an+1+Sn=n2+2n①,得an+Sn-1=(n-1)2+2(n-1)(n≥2)②,由①-②可求得an+1,进而求得an,注意n的取值范围验证a1,a2.
解答:由an+1+Sn=n2+2n①,得an+Sn-1=(n-1)2+2(n-1)(n≥2)②,①-②得,an+1=2n+1(n≥2),an=2n-1(n≥3),又a1=0,a2=3,所以.故