某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与医院抄录1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下图资料:
日期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差x(℃)1011131286就诊人数y(个)222529261612该兴趣小组的研究方案是先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的两组数据检验.
(1)求选取的两组数据恰好相邻的概率;
(2)若选取的是1月与6月的两组数据,请据2~5月份的数据,求出y关于x的线性回归方程;
(3)若线性回归方程得出的估计数据与所选出的检验数据的误差不超过2人,则认为得到的线性回归方程是理想的.试问该兴趣小组得到的线性回归方程是否理想?
网友回答
解:(1)设抽到相邻两个月的数据为事件A,
∵从6组数据中选取2组数据共有种情况,每种情况是等可能出现的,其中抽到相邻两个月的数据的情况有5种,
∴
(2)由数据求得=11,=24,由公式求得,由求得
∴y关于x的线性回归方程为
(3)当x=10时,,
同样,当x=6时,,所以该小组所得线性回归方程是理想的
解析分析:(1)本题是一个古典概型,确定试验发生包含的事件、满足条件的事件的种数,根据古典概型的概率公式得到结果.(2)根据所给的数据,求出x,y的平均数,根据求线性回归方程系数的方法,求出系数b,把b和x,y的平均数,代入求a的公式,做出a的值,写出线性回归方程.(3)根据所求的线性回归方程,预报当自变量为10和6时的y的值,把预报的值同原来表中所给的10和6对应的值做差,差的绝对值不超过2,得到线性回归方程理想.
点评:本题考查线性回归方程的求法,考查等可能事件的概率,考查线性分析的应用,考查解决实际问题的能力,是一个综合题目.