已知函数y=loga(x-1)+3(a>0,a≠1)所过定点的横、纵坐标分别是等差数列{an}的第二项与第三项,若,数列{bn}的前n项和为Tn,则T10=A.B.C.1D.
网友回答
B
解析分析:由函数的解析式求得定点的坐标为(2,3),可得等差数列{an}的公差d=1,通项公式为an=n,求得数列{bn}的通项公式为bn=-,由此求得数列{bn}的前n项和.
解答:函数y=loga(x-1)+3(a>0,a≠1)所过定点的坐标为(2,3),由题意可得 a3=3,a2=2,故等差数列{an}的公差d=1,通项公式为an=n.故==-=-.故 T10=+++…+=1-=,故选B.
点评:本题主要考查对数函数的图象过定点问题,等差数列的通项公式,用裂项法求数列的前n项和,属于中档题.