在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=45°,AB=2CD=2,M为腰BC的中点,则=________.
网友回答
2
解析分析:以直角梯形的两个直角边为坐标轴,写出点的坐标,求出向量的坐标,利用向量数量积的坐标形式的公式求.
解答:以A为原点,AB为x轴,AD为y轴,建立直角坐标系.则:A(0,0),B(2,0),D(0,1),C(1,1),M( .因为AB=2CD=2,∠B=45,所以AD=DC=1,M为腰BC的中点,则M点到AD的距离=(DC+AB)=,M点到AB的距离=DA=所以 ,,所以 =-=2.故