给出以下四个结论:
(1)函数的对称中心是;
(2)若关于x的方程在x∈(0,1)没有实数根,则k的取值范围是k≥2;
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,当a>0且a≠1,b>0时,的取值范围为;
其中正确的结论是:________.
网友回答
解:∵函数===-,
∴函数的对称中心是(-,故(1)不正确.
令f(x)=x-+k,函数是一个递增函数,
当x∈(0,1)时,
函数的值从负无穷变化到接近于0,
∴当k≥2时,函数与x轴有交点,故(2)不正确,
点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,
即直线与线段PQ有交点,
根据要求的结果是PQ两点连线的斜率,
得到斜率范围为,故(3)正确,
故