解答题如图,四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VA

发布时间:2020-07-09 05:27:01

解答题如图,四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ASCD.设AB=2.
(I)证明:AB⊥平面VAD;
(II)若E是VA上的动点,当面DCE⊥面VAB时,求三棱锥V-ECD的体积.

网友回答

(Ⅰ)证明:平面VAD⊥平面ABCD,底面是正方形,∴AB⊥AD,
AB?平面ABCD,
平面VAD∩平面ABCD=AD,
∴AB⊥面VAD.4分
(Ⅱ)解:由(Ⅰ)可知AB⊥平面VAD,
∴CD⊥平面VAD.
∴平面VAD⊥平面ECD.
又∵△VAD是正三角形,
∴当E是VA的中点时,ED⊥VA.
∴VA⊥平面EDC.
∴面DCE⊥面VAB
三棱锥V-ECD的体积等于三棱锥C-EVD的体积,
=.12分解析分析:(Ⅰ)由已知中平面VAD⊥底面ABCD,ABCD是正方形,我们根据正方形的性质及面面垂直的性质定理,得到AB⊥平面VAD;(Ⅱ)由(Ⅰ)可知AB⊥平面VAD,说明平面VAD⊥平面ECD.当E是VA的中点时,证明面DCE⊥面VAB,利用三棱锥V-ECD的体积等于三棱锥C-EVD的体积,求解即可.点评:本题考查直线与平面垂直,几何体的体积的求法,考查计算能力,转化思想.
以上问题属网友观点,不代表本站立场,仅供参考!