解答题已知抛物线C:y2=4x,动直线l:y=k(x+1)与抛物线C交于A,B两点,O为原点.
(1)求证:是定值;
(2)求满足的点M的轨迹方程.
网友回答
解:由得k2x2+(2k2-4)x+k2=0.
由k≠0,且△>0,得-1<k<1,且k≠0.
设A(x1,y1),B(x2,y2),则x1+x2=-2,x1x2=1.
(1)证明:=x1x2+y1y2
=x1x2+k2(x1+1)(x2+1)
=(k2+1)x1x2+k2(x1+x2)+k2
=k2+1+k2()+k2=5,
∴为常数.
(2)解:=(x1+x2,y1+y2)=(,).
设M(x,y),则消去k得y2=4x+8.
又∵x=>2,故M的轨迹方程为y2=4x+8(x>2).解析分析:(1)由题意知k2x2+(2k2-4)x+k2=0.设A(x1,y1),B(x2,y2),则x1+x2=-2,x1x2=1.=x1x2+y1y2=x1x2+k2(x1+1)(x2+1)=k2+1+k2()+k2=5,所以为常数.(2)=(x1+x2,y1+y2)=(,).设M(x,y),则y2=4x+8.由此可知M的轨迹方程为y2=4x+8(x>2).点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,仔细解答.