若函数在[1,+∞)上大于1恒成立,则a的取值范围是
A.
B.
C.(3,+∞)
D.[3,+∞)
网友回答
A解析分析:f(x)>1在区间[1,+∞)上恒成立等价于ax-2 -x>3在区间[1,+∞)上恒成立,分离参数得ax>3+2 -x,构造函数,画出图象,建立a的不等关系,即可得到a的取值范围.解答:解:f(x)>1在区间[1,+∞)上恒成立等价于ax-2 -x>3在区间[1,+∞)上恒成立得ax>3+2 -x令h(x)=3+2 -x,g(x)=ax分别画出函数h(x)和g(x)的图象,由图象,得当x=1时,g(1)的值必须大于h(1)即可.所以a>3+=,因此a的取值范围是.故选A.点评:本题考查对数函数的图象与性质,考查恒成立问题,解题的关键是分离参数,数形结合,属于中档题.