填空题在△ABC中,角A,B,C的对边分别为a,b,c,2bcosB=acosC+ccosA,且b2=3ac,则角A的大小为________.
网友回答
或解析分析:由条件利用正弦定理、诱导公式可得sin2B=sin(A+C),得B=60°,A+C=120°.又b2=3ac,即sin2B=3sinAsinC,利用积化和差公式求得cos(A-C)=0,得A-C=±90°,由此可得A的大小.解答:△ABC中,∵2bcosB=acosC+c?cosA,由正弦定理可得 2sinBcosB=sinAcosC+sinC?cosA,∴sin2B=sin(A+C).得2B=A+C (如果2B=180°-(A+C),结合A+B+C=180°易得B=0°,不合题意).A+B+C=180°=3B,得B=60°,A+C=120°.又b2=3ac,故 sin2B=3sinAsinC,∴=3sinAsinC=3×[cos(A-C)-cos(A+C)]=(cos(A-C)+),解得 cos(A-C)=0,故A-C=±90°,结合A+C=120°,易得 A=,或A=.故